
COMMENTS ON SYSTAMATIC RESONANCES, 

SPACE: CHARGE AND PERIODICITY 

Booster Technical Note 

b/C>. 48 

A, G, RUlGGIERO 

JULY 1, 1986 

ACCELERATOR DEVEL.OPMENT DEPARTMENT 

Brookhoven Nati'onal Laboratory 

Upton, N.% 77973 



COMMENTS ON SYSTAMATIC RESONANCES, SPACE CHARGE AND PERIODICITY 

A. G. RUCGIERO 
JULY 1, 1986 

BOOSTER AT INJECTION 

Kinetic Energy 

Betatron Acceptance (Vert) 

Intensity 

CONCERNS: 

Space Charge Limit 

Eddy Currents 

Chromatic Sextupoles 

Systematic Resonances 

"STANDARD" LATTICE. . 

Periodicity 6 (see later) 

QH = 4.82, Qv = 4.83 

PROTONS 

200 MeV 

50 IT mm.mrad 

1.5 x 10'3 
in 3 bunches 



BEAM DIMENSIONS 

a 

b 

EH = Ev = 50 IT mm.mrad (full) 

A p/p = + 2.5 O/O0 (full) 

Q.F 

13.8&m 

3.7033 

2.9!515 

26.1;2mm 13.37mm 

13.61 26.33 

7.38 1.35 

27.14 

QD 

3.5754m 

13.644 

0.54004 

13.44 

The beam is *'round" 



SPACE CHARGE LIMIT (round beam) 

Ns.c. 4Bf 
- = (BY2) 3rF AQ 
EN 0 

Kinetic Energy 

B 

Y 

r0 

F 

Bf 

EN = (By) E 

200 MeV 

0.56616 

1.2132 

1.535 x IO-l8 m 

1 

0.5 

AQ 
N,.c./EN 

&H = Ej, 

T mm.mrad 

0.250 
9 x lOI m-l I!::", lOI m-l 

50 75 50 75 

Ns.c. 1.0x10'3 1.5x1013 1.5x1013 2.25~10'3 



SYSTEMATIC: RESONANCES 

QH = 4.82 Periodicity = 6 

Qv = 4.83 

QH 

~QH 

QH + 2Qv 

QH - 28, 

l ~QH 

l 2Qv 

l 'IQH 

l 4Qv 

. ~QH + 2Q, 

. ~QH - 2Q, 

~QH + 2Qv 

‘IQH - 2Qv 

~QH 

~QH + 4Qv 

~QH - 4Qv 

P 

6 

12 

12 

-6 

12 

12 

18 

18 

18 

0 

30 

12 

30 

30 

-12 

1.180 

0.820 

0.827 

0.387 . 

1.180 

1.170 

0.320 . 

0.330 . 

0.325 . 

0.005 * 

0.177 f 

0.397 . 

0.180 f 

0.173 f 

0.387 . 



CHROMATICITY. SEXTUPOLES AND EDDY CURRENTS 

Natural Chromaticity (H,V) 
(without eddy currents) 

With Eddy Currents: 

-5 

EH +3 (+8) 

EV -13 C-8) 

SEXTUPOLES STRENGTH TO CANCEL, CHROMATICITY WITH EDDY CURRENT 

SF - 0.1 

SD - 1.0 

Very asymmetric 

Very large average contribution (from E.C.) which enhances 2QH - 2Q, = 0 

resonance. 

SUGGESTION: Compensation of Eddy Currents with pole face windings in Dipole 

Magnets. 



SPACE CHARGE 

P = 

2 qJ = -4 IT p 

ad, 2N 
n 

U2 
E+-5=-- f (2) 

-- 
UC? 

u2r 
2a2 

dU 

r rl U2 

2ai 

4= ue du 

0 0 

= c0nstraint.x r2 - 

i 

+ . . . 
8u2 

1 
r4 = (x2 + y2)2 = (x4 + 2x2.y2 + y4) 

ordinary octupole -x 4 - 6x2~2 + y 4 
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FRANK SACHERER (1971) - 

RMS Beam Envelope Equations ( x , y ) 

;/I + k, 5; EX 
2 

= + i3 

. - 

x3 x+Y 

;/I + k ;; 
EY2 g 

Y * = - + - 

y3 ;+; 

NrO 
g i: 

~ITR Bf B2Y3 

Floquet tranformation: 

rl =; 
Y 

c =,h$- 
ds = Q BH d d 

V 

QH = Qv 



EX 
2 

!3 

,/I + Q2 n = Q2 f,; * _- + Q2f3; * _ 
x3 * x+Y 

</I + Q2 5 = Q2f3; * 

'Jp 
-- 

;.3 
+Q28;* _.'_ 

x+Y 

i2 Y2 
For g = 0 EX 

=- 
BX 

, 
Ey = B Y 

For g + 0, neglect q//, 5" take Bx * By - i 

I 
EX 
2 

i 15 

rl = - + -_ 

4 D q+i 

EY2 Bg 
<=- + -- 

,3 n-t< 

flRoundlt Beam E, = Ey = E then TJ = 5 



N = 1.5 x 10'3 

r0 = 1.535 x lO%Tl 

B’ = 8m 

21rR = 201.78m 

B f = 0.5 

82V3 = 0.57232 

50 
E J- 

3 (71) mm.mrad 

a = 0.1 

l-l* 
- = 1.1 
E 

10% Dihition 
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B - functions, (quads) 

Dispersion 

Dipole, Eddy Currents 

Sextupole Arrangement 

PERIODICITY 

STANDARD 

6 

24 

6 

8 

6 - 24 

T 
Quite Acceptable 

COMBINED 

12 

12 

12 

12 

12 
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S 

B 
0 
0 
s 
T 
E 
R 

w+nm meHi-l-u* H++ufkt t-i s-u . i-w+- -tt, 
wt bt44-s +cH i-u s Irni i(++ t-u *us c 4-b 

t-u t &F* tu+ la t !l+t+ t Gry iw * (Ly+ * i+ 
+H+tH+tu +U+t+l+j- t+UH-b+U tuu+u ,+ 

u E3.D ES3 +H Ezd iw+ &il H Esa i3 t+ 
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FIG. 1 The Amplitude and Dispersion Func Cons of the Booster Lattfce. 
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N 

# EAST 

oc = ,161765 

-Y RADS’ 

. DIRECTInN GF EEAM 

1 = FOCUSING QUAGRUP:lLE 

f 
= DEZJCUSING QUADRUPCiLE 

0 = BENDING MAGNET <:lIPaLE> 

X = SEXTUPOLE 

FIG. 2 a) Schematic Diagram of the Booster 

and 
b) Components of the Superperiod 
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COM6lNEZD FUNCTION L4TllCE 
ahd d’ipale-.5m 6mx--.WS6T 
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10 
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;..._ _...__L__ _Tc.L--r..z . . A.-.; ~L.‘Li_ iLXi;L 

Frank .I. Sacherer 
CERX, Geneva, 

Summary 

Envelope equations for a continuous beam with uni- 
+.,J charge density and elliptical cross-section were 
lirst derived by Kapchinsky and Vladimirsky’(K-V). In 
pet 9 the K-V equations are not restricted to uniformly 
gsrged beams, but are equally valid for any charge dis- 
$ibutiOn with elliptical symmetry, provided the beam 
pundary and emittance are defined by nns (root-mean- 
gluare) values. This results because (i) the second 
,,eents of any particle distribution depend only on the 
linear part of the force (determined by least squares 

Zehod), while (ii) this linear part of the force in 
mm depends only on the second moments of the distribu- 

Lion. This is also true in practice for three-dimen- 
!ional bunched beams with ellipsoidal symmetry, and 
glows the formulation of envelope equations that in- 
:lcde the effect of space charge on bunch length and 
rpergy spread. 

~,e utility of this rms approach was first demon- 
jtrated by Lapostolle’ for stationary distributions. 
;ebsequently, Gluckstern’ proved that the rms version 
,f the K-V equations remain valid for all continuous 
;aat~s with axial symmetry. In this report these re- 
;clts are extended to continuous beams with elliptical 
jymmetry as well as to bunched beams with ellipsoidal 

lorm , and also to one-dimensional moti.on. 

Moment equations 

Consider an ensemble of particles that obey the 
Angle-particle equations 

X=p 
(1.) 

f, = F(x,t) , 

ihere F(x,t) includes both the external force and the 
relf-force, F = Fe + F,. everaging (1) over an arbi- 
trary particle distribution f (x,p, t), we obtain 

;‘p 

(2) 
jY=F=C , 

zhere the last equation follows because F.s = 0 by 
:iewton’s third law. (We neglect the small magnetic sel.f- 
forces due to internal motion.) If F,(x,t) is non-linear 
in X, the second equation of (2) involves the higher 
Uments 7 of the distribution. However, for linear ex- 
ternal forces, Fe z -K(t2_x, equations (2) involve only 
the first moments x and p, and t‘herefore the centre-of-, 
3~s motion depends only on the external force, 

. . 
; + K(t); = 0 , (I’) 

ind not on the detailed form of the distribution. In 
:be remainder of this paper we consider only linear ex- 
:ernal forces. 

The second moments of f(x,p,t) satisfy the equaticns 

7 =2z=2z 

- 
xP 

-7 =z+xp=p - K(t)7 - + xF, (4) 

7 - -- 
P = 2 z = -2K(t)xp + 2 pF, , 

‘Jbere the terms z, and 3, 
aLgher moments 7 and s. 

are usually functions of the 
This is a general feature of 

Switzerland 

moment equations, namely the equation for each moment 
involves the higher moments in an endless hierarchy. 
However, if the self-force is derived from the free- 
space Poisson equation, zs depends mainly on the 
second moments and very little, if at all, on the higher 
moments. This will be demonstrated in the following 
sections. The remaining term ss is associated with 
emittance growth; we will avoid considering it by 
assuming that the rms emittance 

(5) 
is either constant, or that its time dependence is known 
a priori. Then 2 is given in terms of x2, G, and E(t) 
by (5). and the first two equations of (4) form a closed 
set. They can be combined to give the K-V type equation: 

. . 
E2 

z 
; + K(t); - - - -% = 0 , 

x3 
(6) 

x 

where i is the rrns value, j; = AZ. 

The space-charge term in this equation has an in- 
teresting interpretation. If we define the linear part 
of the force Fs(x,t) as E(t)x, where E(t) is determined 
by minimizing the difference 

D = 
/ 

[E(t)x - Fs(x,t)]’ n(x,t) dx 

for a fixed t, where n(x,t) = i f(x,p,t) dp, then 

XF 
E(t)x = 2 x . (8) 

x2 

In other words, the rms envelope equation depends only 
on the linear part of the forces, determined by least 
squares method. 

It is convenient to put equation (4) into matrix 
form. The assumption of constant rms emittance is 

equivalent to setting ps = f(t)J$. Then equation (4) 
has the form 

5 = FU + zFT (9) 

where u is the covariance matrix 

7 xp 

0= 

i I xp 7 

and F is 

0 1 

F= 

-K(t) + c(t) OJ 

(10) 

Equation (9) is equivalent to sJ(t + dt) = %(t)?lT where 
H is the infinitesimal transfer matrix H(t + dt, t) = 
I + F(t) dt. 

This procedure is easily extended to two and three 
dimensions. For three dimensions, the 6 x 6 correlation 
matrix includes cross-correlation terms such as 5, 
xy’, . . . . while the 6 x 6 force matrix F may include 
linear coupling terms from both space-charge and external 
forces. The three-dimensional equivalent of (9) has 
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been incorporated into program TRAKSPORT’ to investi- 
gate both longitudinal and transverse space-charge 
effects in transfer lines6. In many cases the external 
forces will not involve coupling and the cross-correla- 
tion terms between the different directions will be 
zero or close to zero. In this case the envelope equa- 
tions reduce to the R-P form (6) for each direction. 

One-dimensional envelope equations 

For a beam in free space that is very long in the 
z-direction and very wide in the y-direction, only the 
x-component of the self-force is important, and this is 
obtained from the Poisson equation 

2E 
5 = 4nen(x,t) . 

The envelope equation is 
- 

; + K(t); - E’ - 2 ?% = ,, , 
;rs x 

(12) 

(13) 

where Ii is the number of particles per unit area in iiy 
LIZ. This equation can be written as 

2 

(14) 

where A1 is the dimensionless parameter 

2 7 xh(x) dx 1 h(x’) dx’ 

x1= - m 

L 
j x’h(x) dx ” 1 

(15) 

and where h(x) = (l/N)n(x) specifies the distribution. 
For the four distrib,Jtions 

a) uniform, h(x) = $ for x < 1 

=o for x > 1 

b) parabolic h(x) = $1 - x2) for x < 1 

=o for x > 1 

c) gaussian, h(x) = + e-x2’2 

d) hollow, h(x) E. + x2e-x2’2 , 

the values of 11 are given in Table 1. 

Table 1 which suggests the change of variables 

, 
Distribution 

I I 
,/?;hl 

Thus, for the range of distributions likely to be en- 
countered in practice, the variation in Xl is negligible 
and the rms envelope motion will be accurately described 
by Eq. (14) with constant X1, for example Xl := 116. 

A second type of one-dimensional envelope equation 
arises in the study of longitudinal oscillations of a 
bunched beam inside a conducting pipe’. The longitudi- 
nal self-field is determined by 

h(z,t) 
E(z,t) = -eg ;lz , (16) 

where g = 1 + 2 In (pipe radius/beam radius), and the 
corresponding envelope equation is 

. . 
; + K(t); - 5 - i$; = 0 , 

( 17) 

where X is the number of particles per bunch and 

>.2 = $ [ iz’h(z) dz 1 “i h’(z) dz (IS) 

L-02 -I -a 

with values of Xz listed in Table 1. For this case of 
a shielded electric field, the envelope equation does 
depend on the type of distribution. However, if x 
form of the distribution varies only slightly during its 
evolution, for example remains within the range uniforn_ 
parabolic-Gaussian, then the envelope equation (17) can 
be used with confidence. 

Envelope equations for continuous beams 

In the absence of cross-correlations and coupling 
terms, the envelope equations have the form (13) where 
the space-charge terms involve the average Xx and F.,. 
These averages will depend only on the second moments> 
2 and 5 and not on the higher moments provided the 
charge distribution has the elliptical symmetry 

n(x,y,t) = n($-+$, t) . (19) 

In this case the solution to Poisson’s equation is 

m 

E = 2aeabx 
n(T) ds 

X 
(20) 

(a 2 + s)%(b2 + s)% ' 
0 

where 
X2 Y2 T=----_+----_ 

a2 + s b2 + s 
(21) 

wit’h a similar expression for E . 
for,e Y 

The term zx is there 

m 03 m 

- 
XE 

x2 dx dy 
X 

+ s)' 

n(T)n 

(a2 (b2 + s) Y2 

-0Z 

(22) 

r cos 6 
X 

=-, r sin 0 = - 

*+k - 
(23) 

ia5 + s 

h’ith the new variables, the integration over 6 can be 
performed giving 

cc m 

4Tieasb2 ;; =- 
X a+b 

n(r2)2rrr dr n(r’2)2ar’ dr’ . (24) 

0 r 

The remaining integrals can be evaluated with the help 
of the definition 

m m 

h’= n(x,y) dx dy = ab 
i 

n(r2)2rr dr , (29 

0 

where N is the number of particle per unit length. 
Then 

r 

Q(r) = ab 
i 

n(r’2)2nr’ dr’ (26) 

? 
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9 tie number of particles within radius r, and Eq. (24) 

!@o 
mes 

m 

2ea z x- 
x a+b [x - QC~‘)] dr’ , 

aich is easily integrated, 

- eN2a e?12;i 
XE =-=-* 

x 
a+b ;;+y 

(27) 

(28) 

:sing this and.the expression for zy, we obtain the 
peLope equations 

. . 
‘- + K*(t 

E ’ e*N 1 
x- x- -- = 0 

2) m xty 

. . 
3 + Ky(t 

(29) 

-,_frl_ 
e2S 1 
--_=O. 

-3 
Y m Et? 

jase equations are identical to the K-V equations if 
3e rms Jalues 2, Ex, 7, Ey are replaced by the physi- 
sL boundary for a uniform distribution, namely 
l_?Z, . . . * However, they are not restricted to the 
c-V distribution but are valid for any distribution with 
:be elliptical symmetry (19). 

Enveloue equations for bunched beams 

The procedure in two-dimensions can be repeated 
:ar bunched beams with the ellipsoidal symmetry 

2 2 2 

r + E + Z- , t . (30) 
a2 b2 c2 

Tae electric field is’ 

io 

rx = 2neabcx 
i 

n(T) ds 

(a2 
3 

+ s)/2(b2 + s) . & + s) ‘4 ’ 
(31) 

0 

mere 

x2 Y2 z2 T=--_+--_+-- (32) 
a2 + s b2 + s ca + s 

sd with analogous expressions for E and E The term 
Dy can be reduced to the form Y 2’ 
. . 

- 
XE 

e:G2X3 
X =-g 

z 
x 

(33) 

a>ere ?J is the number of particles per bunch and 
00 

3 =_ 
gx 2 i 3 (1 + s) *(~+d+[zi: c sj x . (34” 

>,e integral in (34) can be expressed in terms of ellip- 
:Lc integrals of the second kind, but direct numerical 
?‘aluation with the Gaussian integration method is 
qsier and also quick and accurate. The complete en- 
‘*Lope equation for 2 is 

E 
2 

e’?IXg 
; + y)x - _L - - g - , 3_ =o, 

G3 mj;’ t 1 * G 2. 
(3.5) 

‘:ere 

!=- h(r’)r’ dr h(r2)r2 dr h@‘)o do 

r 
(3,6) 

with the normalization 

m 

i 
h(r2)r2 dr = 1 . 

0 

(37) 

The parameter As depends only weakly on the type of dis- 
tribution as shown in Table 1. Thus for practical distri- 
butions, the dependence of the envelope equations on the 
type of distribution can be neglected. The same state- 
ment also applies if cross-correlations or linear exter- 
nal coupling forces are present; in this case the more 
general matrix form (9) of the rms equations can be used. 

Conclusion 

A rather surprising and useful result has been 
found for beams in free space, namely that the linear 
part of the self-field depends mainly on the rms size 
of the distribution and only very weakly on its exact 
form. Using this result, envelope equations for the 
rms beam size have been derived that are exact for con- 
tinuous beams of elliptical syranetry, and in practice 
also valid for bunched beams of ellipsoidal form. The 
main restriction in applying these equations is that 
the time dependence of the rms emittance must be known 

Possible uses of the equations include the specifi- 
cation of stationary or matched states in the presence 
of space charge. For example, the periodic solution of 
Eq. (35) for alternating-gradient structures, including 
radio frequency cavities, specifies the matched beam 
size (both longitudinal and transverse) as a function 
of nns emittances and intensity. The largest matched 
size attainable without exceeding aperture limits or 
bucket size determines a space-charge limit. For a 
beam matched in this way, envelope oscillations about 
the periodic solution are suppressed, although higher 
modes of oscillations (sextupole, octupole, etc.) may 
occur. Suppression of the higher modes will require 
constraints, as yet undetermined, on the higher moments 
of the distribution. Another use is the design of low- 
energy beam transfer lines. 
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